

Catenaryless Tram Systems: Sustainable Eco-Friendly Solution for the City Transport

www.caf.net

Index

- CAF
- BACK GROUND
- CAF GROUP
- RAIL SOLUTIONS AND RECORDS
- REGIONAL PRESENCE
- TRAM / URBOS PLATFORM
- ECo CAF SOLUTION
- ENERGY STORAGE SYSTEMS CONTEXT
- ACR SOLUTION
- ACR SYSTEM PROVEN
- SOLUTION TO OPERATORS CONCERNS

CAF Products and Services

R	LIN	IG	ST	0	CK
	_			<u> </u>	

• Design and manufacture of all types of rolling stock

TURNKEY PROJECTS

Turnkey

Contract Licenses

FINANCING

- Project Financing
- Leasing/Renting
- Made to measure solutions

SUBSYSTEMS

- Component Manufacture (wheels, axles, couplings, etc.)
- Equipment Supply
- (Bogies, Cosmos...)

ENGINEERING SERVICES

- Integration of Systems
- R&D
- Reliability Study
- Simulators
- Documentation
- Testing

HETRO HADRED BAD

AFTER-SALES SERVICES

- Maintenance
- Spare Parts Supply
- Repair

WE CREATE WORLWIDE RAILWAY SOLUTIONS

CAF shares all our GCC customers' our passion for the design of the latest state-of-the-art technologies for any kind of transport solution, either on turn key or supply basis : metro, commuter trains, high speed trains and catenary free trams.

A new train generation that guarantees maximum power-efficiency and full passenger comfort with latest technology innovations that benefit everyone in order to create a better world.

Rolling stock

Complete Range of Products

High-Speed Trains (350 kph) Trams (ACR) Push – Pull Trains Regional Trains Suburban Trains Metro Airport Shuttles Articulated Units Locomotives **CAF Group** comprises more than 50 companies that work together to offer global railway solutions such as:

-BZK Ferroviaria: Transport System Divison

-Eliop Seinalia: energy remote control and signaling

-CETEST: comprehensive testing and test management

-Lander: simulation systems

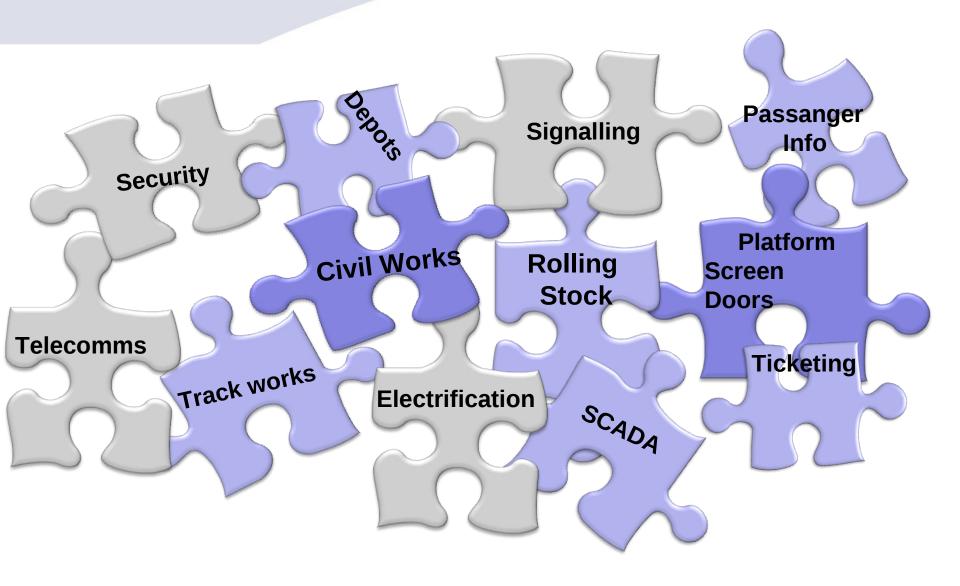
- -Danobat Rail: depot equipment
- -Trainelec: design and manufacture of electrical traction equipment for all types of trains

-Traintic: information and communication systems in the railway sector

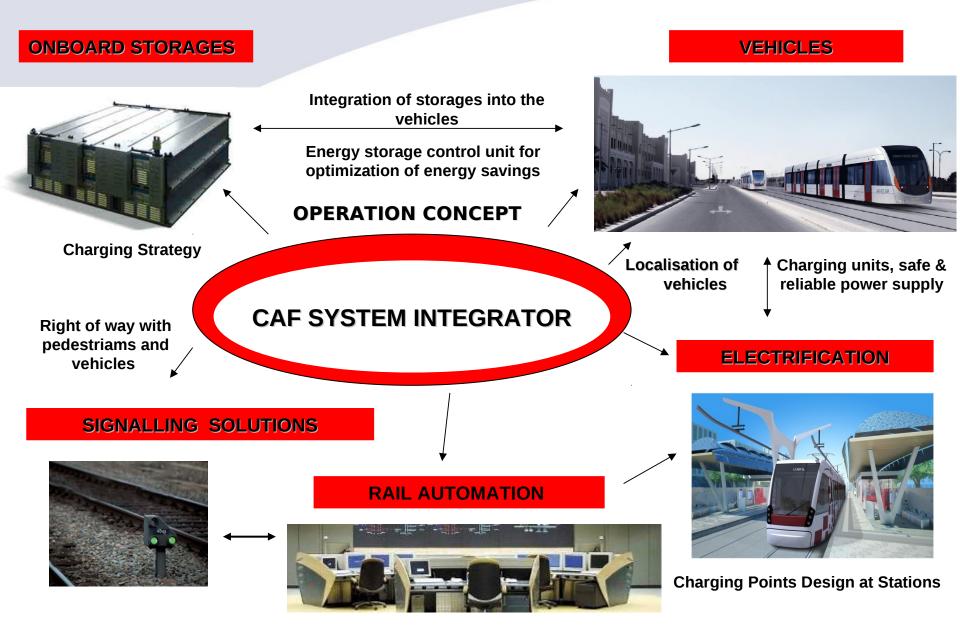
-Geminys: integrated document management

-NEM: intelligent maintenance management systems.

eliop **Z** seinalia

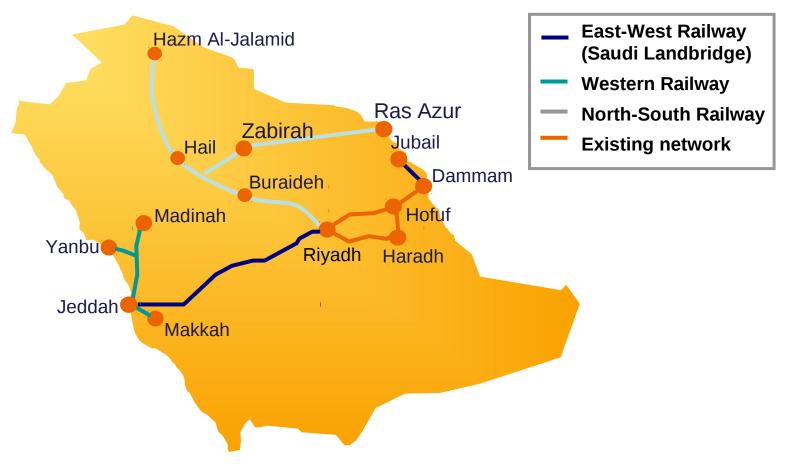

traintic trainelec

Traction solutions for the railway industry



CAF Transport Systems Division provides a fully customised Turn Key Solution

CAF Group guarantees the integration and compatibility of all the required subsystems (Turn Key Solution)



International Records

The Railway Expansion Program


Railway Expansion Program will add 3,200 km of track to the existing network ...

... connecting all major cities in the Kingdom

قطارات حديثة تقطع السافة بين الدمام والرياض في 3 ساعات

♦8 قطارات إسبانية تدخل الخدمة بعد 8 أشغر

للطار الجنيد (أيوم)

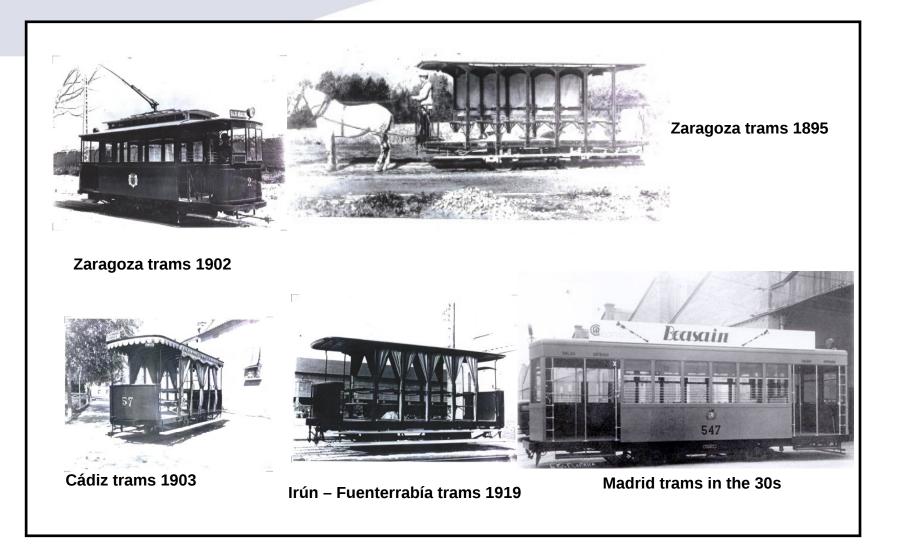
• ليو. النام

تستعد الوسسة العامة وثالث سفادراد "اليوم" إن وتبين ملاسته تمايا اليرية اللاطوط المتبحية تتقفيل فالأستعارات المحيخة قالسة السمودية، فيما يقص اللطاة قطارات من الأحدث فن العالم من إسبانيا ، حيث الوجعت ، والاشات ووسائل السلاية ، على قط الأسلم - الأسباد - الجالا من الفطوط السليمية (ومن القولوان يمل لول فعظم استكون 200 كم - سلسة / الإحماد في 20 دقيطة وفلات القليطين الفلسطين مكة الول النظير المربية، والدارن

الكلامة في مدينة يراغ ، داخل السكنة. وطيت الهوم" أن السرعة

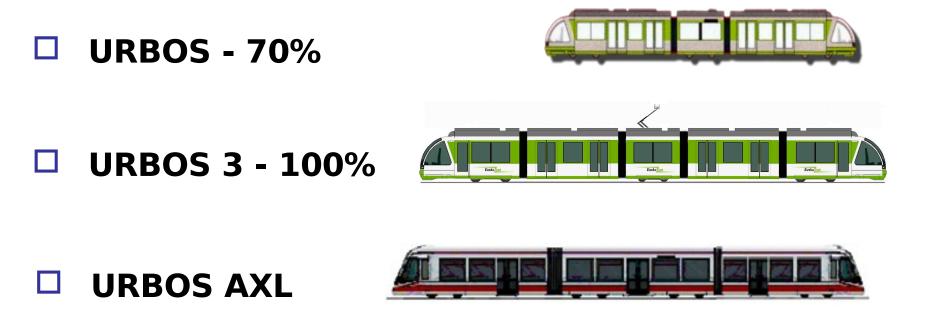
الفدف أن يقطع السابة بين

للستوط المبيدية بالباكل الثاك وسيتبر الربط بينقا في البدام والزياص في لا سلبات ، وستها النظار المرمين '

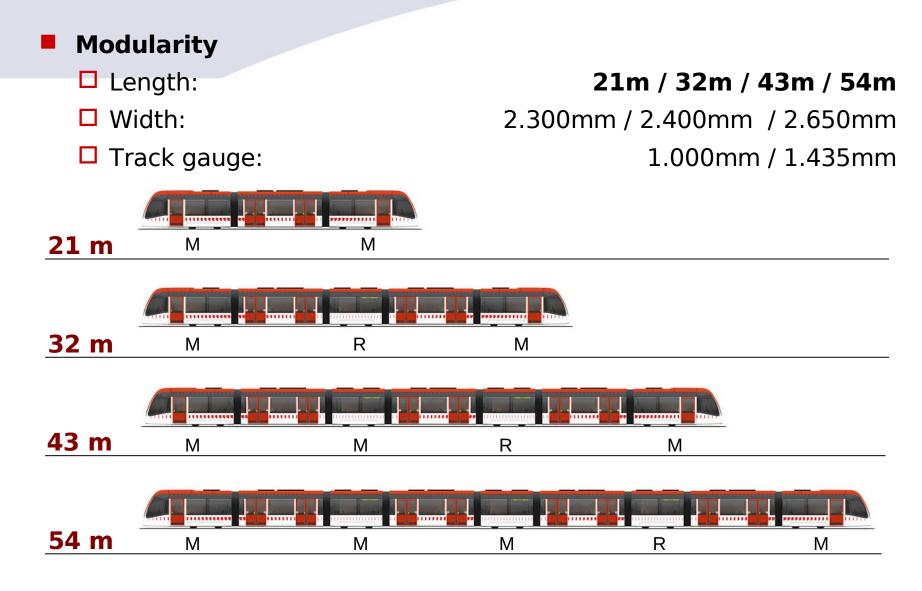

C1750

Serie Male Alali Islai الشسون للفطار الإدراد الإعلامي فاستعلك والعمام السلوميرسا مدينة جدلا المؤوا فبكله التدردية بين الشعارات وتقيير التقلية

وسوف تجرن له التبيارات - تحراوح بين القوقة الان في إطار إنتاء التيكة الكبري - الخطوط المدينية في عام - القطارات المدينة على عمة النعام - الاصاء - الرياض الهؤيد من المغاد مستخدس العاط لدى لإواطن المعودي



Start of the 20th century. The beginnings of our current URBOS Trams



URBOS platform includes the following vehicle families:

All of them are compatible with the energy storge system

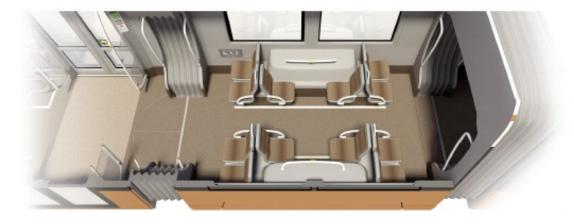
URBOS 100% LOW FLOOR

URBOS * Trams with ACR technology

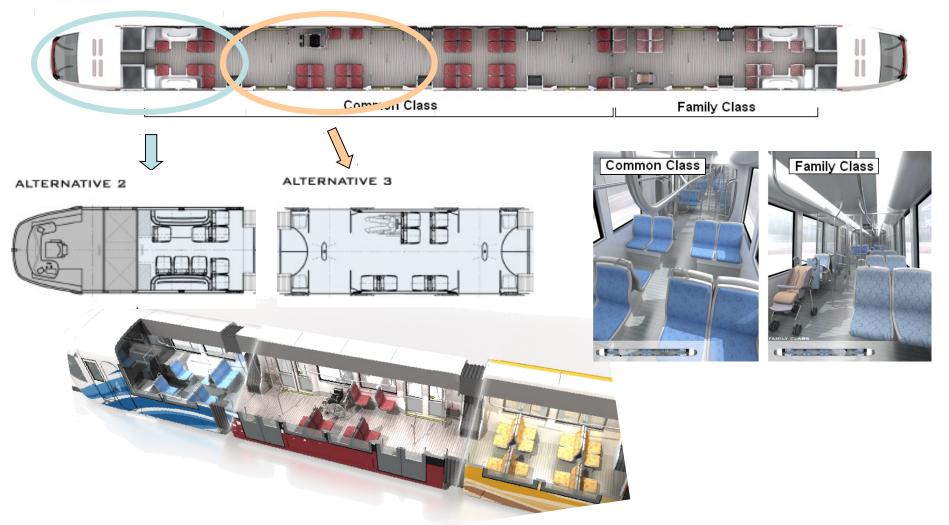
PROJECT	Low Floor	Gauge	Nº LRV	Length/width (m)
Seville Metro	URBOS 2	1.435	17	31,26 / 2,650
Velez-Malaga	URBOS 2	1.435	3	31,26 / 2,650
Vitoria-Gasteiz	URBOS 2	1.000	11	31,26 / 2,400
Antalya	URBOS 2	1.435	14	35,00 / 2,650
Edinburgh	URBOS 2	1.435	27	42,26 / 2,650
Malaga	URBOS 3	1.435	14	32,366 / 2,650
Seville Downtown*	URBOS 3	1.435	5	32,366 / 2,400

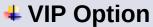
URBOS * Trams with ACR technology

PROJECT	Low Floor	Gauge	Nº LRV	Length/width (m)
Belgrade	URBOS 3	1.000	30	32,36 / 2,30
Granada*	URBOS 3	1.435	13	32,36 / 2,65
Saragossa*	URBOS 3	1.435	21	32,36 / 2,65
Nantes	URBOS 3	1.435	12	37,96 / 2,40
Besançon	URBOS 3	1.435	19	23,02 / 2,40
Stockholm	URBOS AXL	1.435	22	30,80 / 2,65
Birmingham	URBOS AXL	1.435	20	32,90 / 2,65
Houstom 70% Low Floor	URBOS	1435	39	29,10 / 2,65



Vehicle Interior Layout




Main Features - Interior

Several alternatives for interior design comprising Common class and Family class areas

ALTERNATIVE 1

Main Features - Interior

COMFORT RATE

VIP class: 100% seated Family class: 32% seated, 1 wheelchair Common class: 32% seated, 1 wheelchair

Main Features - Exterior

4 Different approaches for exterior designs

ECo CAF SOLUTIONS

Committed to offering sustainable transport solutions

The search for more efficient and environmentally friendly means of transport is a primordial objective of our company.

CAF carries out an especially relevant role due to its ability to reduce transport energy costs and promote alternative, highly efficient and environmentally friendly, means of transport.

Energy Storage System: Context and Problems

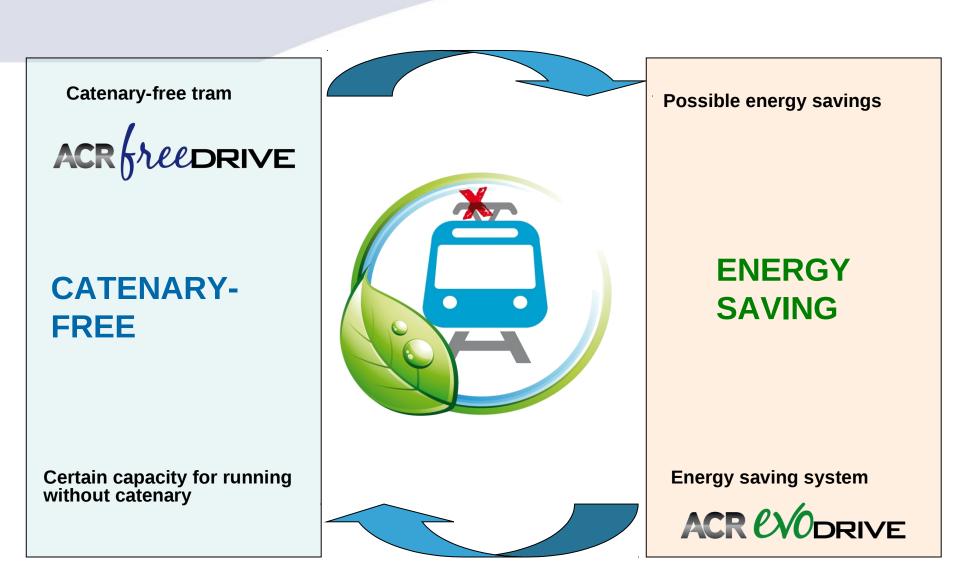
• Demand for increasingly cleaner and more efficient systems from an energy point of view.

• Growing concern about the visual impact of catenary in historical and/or special designed areas.

EcoCAF Solution

SARAGOSSA Tram with ACR Product Environmental Statement according to ISO 14025

World's first verified EPD for a Tram



Potential recoverability and recyclability profile

Thanks to the studied design and modularity used for tram assembly and disassembly, high potential recoverability and recyclability rates at the end of its useful life are achieved, in agreement with ISO 22628, such as:

TZ Recoverability and Recyclability Potential			Material Recycling
Material Recycling	96.7%	Recoverability	96.7%
Energy Recovery	2.0%	Recyclability	Energy Recovery 2.0%
Waste / Disposal	1.3%	Potential	Waste / Disposal

Challenges

Greentech Solutions

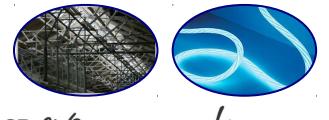
Greentech is CAF/ Trainelec's green product line that answers the needs set out

On-board energy storage system focused on energy saving.

On-board energy storage system focused on **catenary-free** operating mode.

Benefits of On-Board Energy Storage (ACR)

Catenary-free operation.


- \Rightarrow Distances > 500 metres up to 2500 metres
- ⇒ Heritage districts
- ⇒ Architectural barriers

ACR freedrive

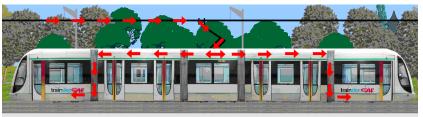
✓ Catenary-free areas.

- ⇒ Distances < 200 metres
- ⇒ Neutral areas
- ⇒ Tunnel exits
- ⇒ Depots

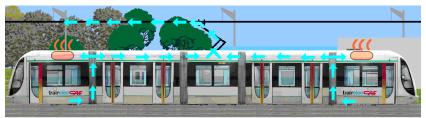
ACR EVODRIVE ACR FREEDRIVE

Energy saving.

- ⇒ In tram
- \Rightarrow On the line.



- ✓ Consumption peaks.⇒ Peaks
 - \Rightarrow Stabilisation.

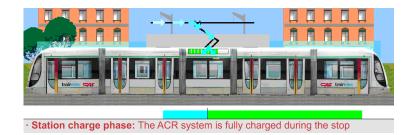


ACR - FREEDRIVE. FUNCTIONALITY

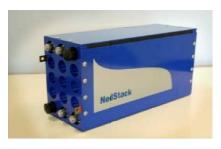
CONVENTIONAL TRAM

• Traction phase: Between stations the energy is supplied by the catenary

• **Braking phase:** A small part of kinetic energy is returned to the catenary. The rest of the energy is dissipated in the brake resistors


CATENARY-FREE TRAM

• **Traction phase:** The tram starts running from the station with ACR system fully charged supplying the energy to the traction system



Braking phase: The whole of kinetic energy is recovered in the ACR system starting the recharge process

On-Board Storage Technologies

• Over 4 years of research to analyse, study, integrate and test different energy storage solutions (ESS) in trains.

• Fuel cell

• Batteries

• Supercapacitors

Supercapacitors and Batteries

Batteries vs Supercapacitors

	Energy density	Power	Life expectancy (approx. number of cycles)
Batteries	High	Low	2.000
Supercapacitors	Medium	High	1.000.000

Energy density.

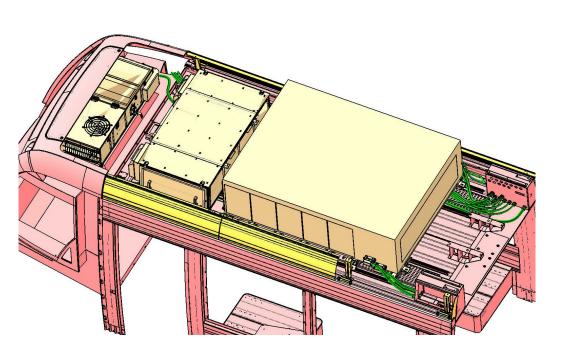
 \Rightarrow Directly related to running range.

- \Rightarrow Battery energy quality \neq Supercapacitor.
 - Supercapacitor, physical phenomenon.
 - \succ Battery, chemical phenomenon.

✓ Power.

⇒ Supercapacitor. Allows charging at very high current. Ultra-rapid charging process: 20 sec.

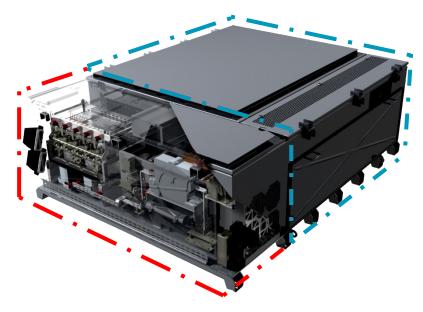
 \Rightarrow Battery. High current rate charging is detrimental. Charging process > 5 min.


On-board energy storage system based on **supercapacitors.**

On-board energy storage system based on **supercapacitors** and batteries. Hybrid Technology.

ACR - FREEDRIVE. INSTALATION

- ACR sytem is mounted on the roof to the end modules of the tramway.
- •Third rail is powered only when the vehicle is over the rail. Fail safe system.



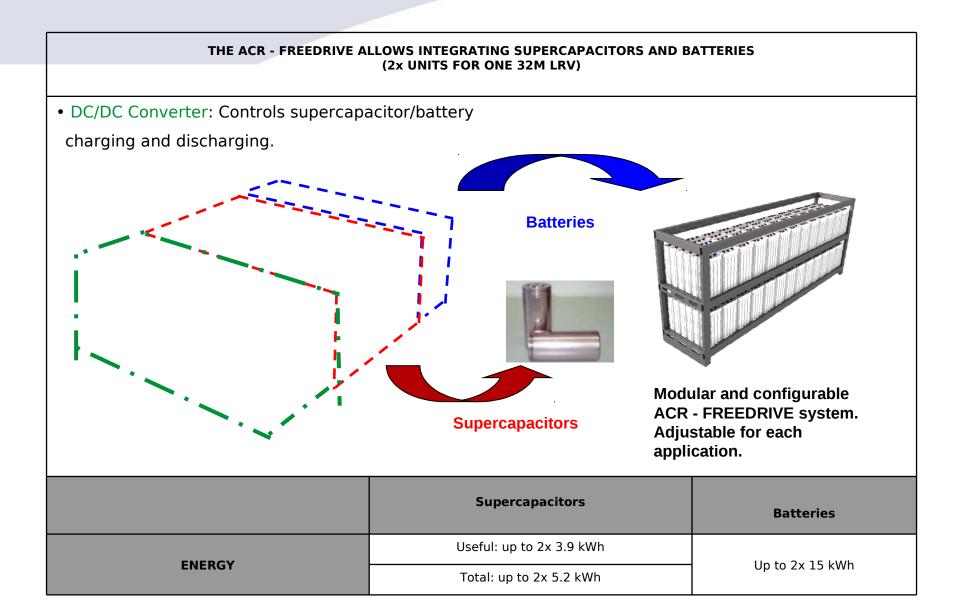
ACR System. Technical Characteristics

Integrated ACR Equipment: DC/DC + Energy Storage

- ▷ DC/DC converter: energy charge and discharge control.
- Energy Storage System: energy storage in supercaps/battery modules.
- ➡ Modular system with 5 independent branches per ACR module.
- ➡ Configurable ultracap/battery distribution depending on the application.

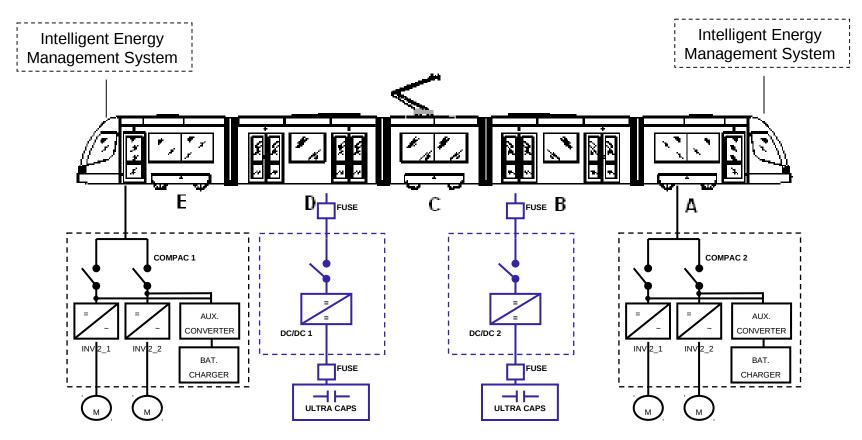
ACR System. Energy storage

The enery storage is configurable


- \Rightarrow Modular system according to number of branches.
- Configurable branch composition depending on energy needs: ultracaps, battery.

Details of 5 branch ultracap equipment

- \Rightarrow 5 independent modular branches
- ⇒ Maximun working voltage per cell: 2,7 Vdc.
- ⇒ Energy: 3,9 kWh of useful energy (5,2 kWh of full energy).
- ⇒ Power: defined by dc/dc equipment.
- Cooling type: modular cooling (natural convection, forced air, foreced air + cooling circuit + closed cooling air circuit).



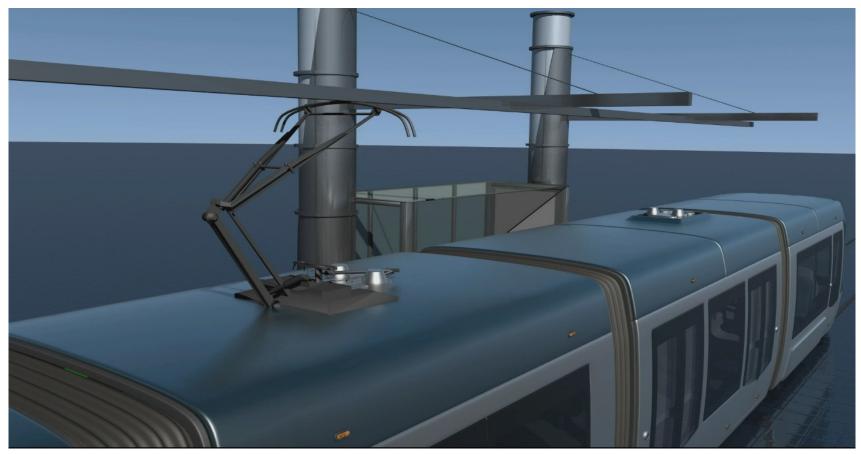
ACR - FREEDRIVE. SYSTEM DESCRIPTION

ACR System

Two ACR modules per unit

ACR - FREEDRIVE. CHARGING INFRASTRUCTURES

Charging process can be made either from the third rail or rigid Overhead Catenary at Stations_


CAF unic World Manufacturer with Two charging solutions for Catenary Less Trams in service

Third Rail is not considered by CAF an appropriate solution due to dust and sand environmental conditions

ACR - FREEDRIVE. CATENARY CHARGING SYSTEM

- Short Rigid Catenay installed only at the stops
- Double Rigid Catenary

Metrocentro Seville Tram. MAIN DATA


Service in extreme conditions:

- Average maximum temperature (July August 2010): 35 °C.
- Maximum temperature during operating period: 42.2 °C (11 August 2011)
- Maximum consumption of auxiliary equipment.

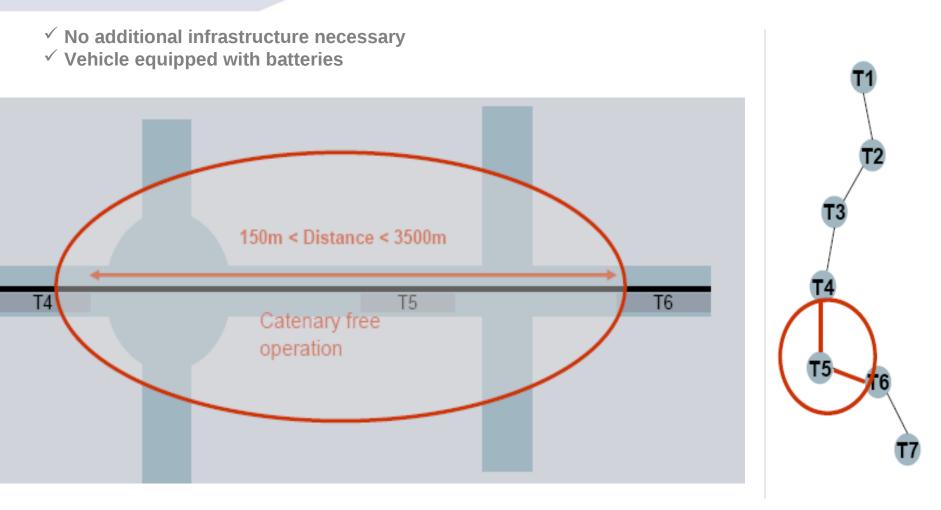
Details of revenues service with passengers

- More than 269 routes are performed daily along the catenary-free section.
- More than 150 KM are completed daily without catenary.
- 100% availability of the ACR Freedrive system.

ACR System Service Proven

Sevilla Tram

March 2010



Granada Tram Delivery in 2013

Scenario 1 for partly catenary free operation (w/ Ultracaps)

Requirement for partly catenary free operation example from T4 to T6 (<3.500m)

ACR System Service Proven

Seville Tram: main data

Configuration:

• 5 cars

Train type	Urbos 3 - 5 cars (32 m)
Number of trains	4
Number of ACR - Freedrive units	2
Supercapacitor energy	2x 4.1kWh
Battery energy	Without Battery
Line characteristics: SECTION 1	SECTION 2

	Section 1	Section 2
Catenary	YES	NO
Length (km)	1.514	0.483
Number of stops	2	0
Maximum gradient	1.56%	0.66%

ACR System Service Proven

Saragossa Tram: main data

Configuration:

• 5 cars

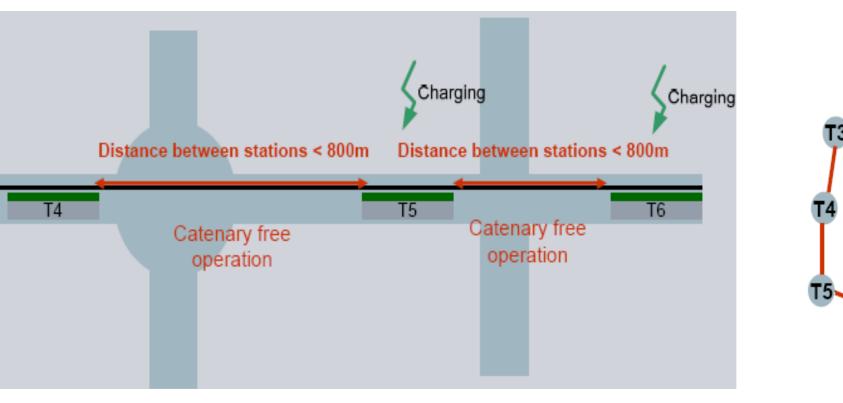
Train type	Urbos 3 - 5 cars (32 m)
Number of trains	21
Number of ACR units	2
Supercapacitor energy	2x 4.1kWh
Battery energy	2x 15 kWh

Line characteristics:

SECTION 1

SECTION 2

SECTION 3


	Section 1	Section 2	Section 3
Catenary	YES	NO	YES
Length (km)	4.91	2.087	5.786
Number of stops	8	3	10
Maximum gradient	5.95%	2.18%	6.70%

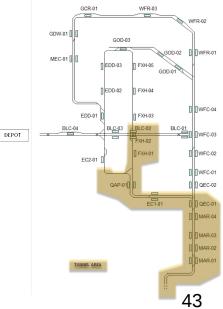
Scenario 2 for fully catenary free operation

(w/ Capacitors & Batteries)

Requirement Full catenary free operation example from T1 to T7 (distance between stations < 800m)

- \checkmark No additional infrastructure necessary, charging at stations
- \checkmark Vehicle equipped with capacitors & batteries (**batteries as backup only)**

ACR System


Lusail Tram: main data

Line characteristics:

One route with over 2000 meters distance between stops

	Green Line		Red Line	Purple Line	Yellow Line
Catenary	YES	NO	NO	NO	NO
Length (km)	2.46	11.93	2.31	1.84	4.81
Number of stops	5	13	4	4	9
Maximum gradient	6%	1.07%	1.8%	3.1%	4.1%

Suitability to GCC and Qatar Projects

• PROVEN SOLUTION IN REAL OPERATION	√ок	-Seville: total 97.000 km -Saragossa: total 240.000 km
• <u>HIGH TEMPERATURE</u> CONDITIONS	√ОК	 -Maximum recorded temperature in Seville during operation period: 42.2 °C (11 august 2010). Comparable to Doha. -Cooling system improved for Qatar(now refrigerated). Approx +60% higher cooling capacity compared to Seville (forced air).
• <u>ENVIRONMENTAL</u> CONDITIONS: SAND & DUST	√ОК	 Proposed ACR cooling system is mixed, forced air and refrigerated circuit, so that there is no contact with external air. Infraestructure: The Rapid Charge Power Supply System (SCSE) charging infrastructure is elevated. As the contact device of the recharge point is installed elevated, sand and dust accumulation is not a problem as it could be for a system based on track level power collection.
■ <u>DISTANCE IN CATENARY-</u> FREE OPERATION	√ОК	-Saragossa/Seville LRT with 2x4.1kWh (without using battery) can cross long distances:
		Interca and Terrol of the digital memory relations HERALDO.es SARAGOSSA WOBULTY The street car crosses in tests and for the first time 4.7

kilometers without catenary

CAF approach to main operators concerns

MAIN OPERATOR'S CONCERNS

INVESTMENT

 Higher initial investment costs compared to conventional system

SAFETY

- ✓ Alternative power supply
- ✓ Road conditions and future maintenance for construction and traffic at street crossings

✓ Lower operational costs → Energy savings

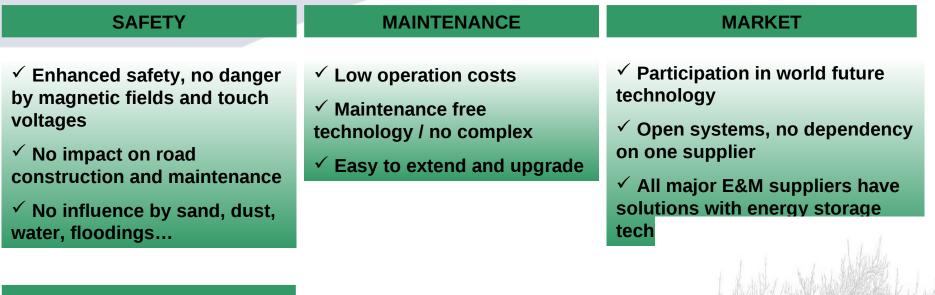
- ✓ Lower maintenance costs → Maintenance Free
- \checkmark Lower life cycle costs \rightarrow Open Source
- ✓ Lower Infra. Costs \rightarrow E&M and Civil Works savings
- ✓ No danger by magnetic fields
- ✓ No danger by direct touch voltages
- \checkmark No limitations for road constructions and traffic

CAF approach to main operators concerns

OPERATOR'S CONCERNS

TECHNOLOGY

- Benefiting from latest technology
- ✓ Independent from single source supplier
- ✓ Extendability of the system


ENVIRONMENT

- ✓ Energy savings
- ✓ Free of environmental influences

- ✓ Proven technologies for energy storage
- ✓ Multiple sources for energy storages possible
- ✓ Easy extension of the system (e.g. new stations...)
- ✓ Energy savings up to 35%
- ✓ Full energy recuperation of breaking energy
- \checkmark No impact by sand, water, dust, wind
- \checkmark No impact by heavy traffic or radio signals

Overall Advantages of ACR Energy Storage

ENVIRONMENTAL

- ✓ Up to 35% energy savings
- ✓ Up to 30% lower CO2 emissions
- \checkmark No additional weight \rightarrow compensated through light vehicle designs

Thanks for your attention